Partial Algebraic Systems of type (T_n ,(n))
DOI: 10.54647/mathematics110401 90 Downloads 151846 Views
Author(s)
Abstract
In this paper, we define the set (CF_(T_n,(n))(X_n))^{A^s} of all n-ary C-formulas on the partial algebraic system A^s=(A;(f^A_i)_i in I,r^A) of type (T_n,(n)) and define the operation R^{n,A} on the set( (W^C_{T_n}(X_n))^{A^s}U(CF_(T_n,(n))(X_n))^{A^s}. After this definition we have a unitary Menger algebra ( ( (W^C_{T_n}(X_n))^{A^s}U(CF_(T_n,(n))(X_n))^{A^s};R^{n,A},x^{A^s}_1,...,x^{A^s}_n) of rank n . Finally, we show that the set of all C-hypersubstitutions for an algebraic system of the type (T_n,(n)) with a binary operation on this set and the identity element forms a monoid.
Keywords
term, unitary Menger algebra of rank n, hypersubstitution.
Cite this paper
Saofee Busaman,
Partial Algebraic Systems of type (T_n ,(n))
, SCIREA Journal of Mathematics.
Volume 8, Issue 2, April 2023 | PP. 62-86.
10.54647/mathematics110401
References
[ 1 ] | F. Börner, Varieties of Partial Algebras, Beiträge zur Algebra und Geometrie, 37(2),(1996), 259-287. |
[ 2 ] | P. Burmeister, A model Theoretic Oriented Approach to Partial Algebras. Introduction to Theory and Application of Partial Algebras-Part I, Akademie-Verlag Berlin, (1986), 1-319. |
[ 3 ] | P. Burmeister, Lecture Notes on Universal Algebra-Many-Sorted Partial Algebras, (2002), 1-204. |
[ 4 ] | S. Busaman, Hyperequational Theory for partial algebras, Ph.D.Thesis, Universitat Potsdam, (2006), 1-131. |
[ 5 ] | S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type , Asian-European Journal of Mathematics, Vol.14, No.4, DOI:10.1142/S1793557121500509, (2021), 1-20. |
[ 6 ] | W. Craig, Near equational and equational systems of logic for partial functions I, The Journal of Symbolic Logic, 54(1989), 795-827,. |
[ 7 ] | K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Springer-Verlag, (2006), 1-341. |
[ 8 ] | K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra, Vol. 7, Verlag Hölder-Pichler-Tempsky, Wien, (1991), 97-118. |
[ 9 ] | A.I. Mal'cev, Algebraic Systems, Akademie-Verlag, Berlin, (1973), 1-317. |
[ 10 ] | D. Phusanga, Derived Algebric Systems, Ph.D.Thesis, Universität Potsdam, (2013), 1-81. |
[ 11 ] | D. Welke, Hyperidentitäten partieller Algebren, Ph.D.Thesis, Universität Potsdam, (1996), 1-104. |